Het merendeel van onze elektriciteit wordt opgewekt in grote elektriciteitscentrales. Daarbij verdwijnt een groot deel van de energie via het koelwater in rivieren, in zee of via koeltorens gewoon in de lucht. Gemiddeld de helft van de verburnte energie gaat zo verloren. Een energetisch fraai alternatief is de warmtekraktkoppeling of WKK.

Luc Brams, Stephan Thys

Energiebesparing door warmtekraktkoppeling

Met een warmtekraktkoppeling-installatie worden elektriciteit en warmte tegelijkertijd bij de gebruiker opgewekt. Omdat dit ter plaatse gebeurt worden de verliezen aan transport van warmte en elektriciteit vrijwel tot nul herleid, ook al omdat bij WKK de productie van warmte voorop staat, dit in tegenstelling tot de klassieke elektriciteitscentrales die de opwekking van elektriciteit als hun kerntaak zien. Het brandstofverbruik voor de gecombineerde productie van elektriciteit en warmte in een WKK ligt hierdoor een stuk lager dan de gescheiden opwekking van eenzelfde hoeveelheid energie. Het totaalrendement van een WKK-installatie ligt gewoonlijk rond 85%. Met een globaal rendement van meer dan 100 procent beschikt Agfa in België over een zeer performante WKK-installatie. Dit uitzonderlijke resultaat is toe te schrijven aan de intelligente combinatie van twee factoren: het gebruik van motoren met een uitstekend elektrisch rendement (40%) en de herwinning van alle beschikbare warmte. Naast de warmte van de rookgassen van de motoren en de carterkoeling, wordt zelfs de stralingswarmte van de motoren en de warmte die vrijkomt bij de condensatie van de uitlaatgassen (52%) gereguleerd. Indien men zou refereren naar de onderste verbrandingswaarde van het gas dat als brandstof voor deze WKK gebruikt wordt, dan zou men grofweg kunnen zeggen dat met 20 megawatt aardgas deze WKK voor 21 megawatt aan warmte en elektriciteit produceert.

Hoog elektrisch en thermisch rendement

Vier gasmotoren draaien continu en leveren samen acht megawatt elektriciteit op. De uitlaatgassen van deze motoren hebben een temperatuur van ongeveer 550 °C die toelaten om 1,25 ton stoom te produceren tegen
19 bar (absolute bar) en 340 °C. Het water wordt op 90 °C gebracht, eerst door middel van een economiser (rookgassen), vervolgens met de koelwisselaar van het motorblok, goed voor een totaal thermisch vermogen van 1.327 kW per motor. Agfa gebruikt ook de lage temperatuuren afkomstig van het carter, de intercooler van de WKK-motor en de schuwwcondensatietherme, goed voor een thermisch vermogen van 555 kW. Tot slot wordt ook nog de stralingswarme van de motoren (200 kW) herwonnen met het oog op de productie van warme lucht (35 °C) die wordt gebruikt voor de regeneratie van de luchtintrogers in de gietzalen.

Met de installatie van een systeem van bijstook op de afvoergassen van een WK-K-aardgas motor zorgt Agfa voor een primeur in Europa. Vanaf branding is iets wat we normaal alleen bij gasturbines terugvinden omdat de afvoergassen daar nog voldoende zuurstof bevatten om het gecoördineerde aardgas te doen ontvlammen. Het zuurstofgehalte in de uitlaatgassen van een motor is evenwél kleiner dan bij een turbine. Daardoor kan de naverbranding enkel gebeuren door toevoeging van verse lucht. Door de injectie van extra zuurstof kan de brander de uitlaatgassen van 550 °C opnieuw verhitten tot een temperatuur van 1500 °C bereikt wordt. Omdat de oorspronkelijke ketel dit surplus niet meer hoeft te produceren geeft dit op zijn beurt een extra primaire energiebesparing van 267 kW. Maar aan het systeem zitten nog meer prettige kanten. Dankzij de naverbranding van 3,269 kW aardgas wekt de Clayton-recuperaatketel 5,2 ton stoom per uur op in plaats van 1,2 ton aan quasi 100% rendement.

Tot 33% primaire energiebesparing

Een elektriciteitscentrale met hoog rendement verbruikt 3940 kW aardgas voor de productie van 1970 kW stroom. Een rendement van 50% dus. Een stoomketel met een rendement van 85% verbruikt 1135 kW aardgas om 965 kW stoom te produceren. Voor de productie van 1882 kW warm water van 90 °C, en 40 °C loopt het gasverbruik in een hoogrendementsketel tot een totaalverbruik van 2091 kW aardgas. 200 kW warme lucht vergt nog eens een extra 215 kW aardgas. Alsje bij elkaar verbruiken de hiervoor opgesomde afzonderlijke installaties in totaal samen 7381 kW aardgas. De WKK-eenheid van Agfa verbruikt amper 4930 kW voor de productie van dezelfde hoeveelheden elektriciteit, stoom én warme lucht. Het aardgasverbruik van de WKK-centrale ligt zo maar liefst 33% lager dan bij de gescheiden productie. Deze besparing is de primaire energiebesparing waarvan het voordeel zich niet alleen weerspiegelt in de brandstofactuur, maar tevens mee het aantalen toegekende WKK-certificaten bepaalt.

Snelle terugbetalen

Hoewel de vier WKK-motoren ongeveer 8000 uur per jaar draaien, wordt er flink op het primaire energieverbruik bespaard: 78,500 MWh. Het Vlaams Gewest belooft deze primaire energiebesparing a rato van 1 WKK-certificaat per megawattuur. De overheid verplicht energieleveranciers om een deel electriciteit te producenen uit WKK. Indien zij hieraan niet voldoen bedraagt de boete 45 euro per MWh. De producenten kunnen als alternatief voor de boete certificaten kopen van eigenaars van WKK. Zo krijgen deze bedrijven onrechtstreeks een vorm van subsidie voor energiebesparende initiatieven. De gemiddelde prijs van een certificaat is een marktgegeven, maar zal in de buurt liggen van de boetewaarden. De 78,500 WKK-certificaten die Agfa ieder jaar van de VRG (de Vlaamse energieregulator) ontvangt zijn verhandelbaar aan een elektriciteitsproducent volgens beschreven mechanisme. Voorts is de aankoop van aardgas veel goedkoper dan de aankoop van elektriciteit. Per megawattuur kost elektriciteit ongeveer het drie- of viervoudig van aardgas. Het aardgas is nodig voor de productie van een megawattuur elektrische stroom in de WKK kost bijvoorbeeld 25 euro. Per jaar levert dit een besparing op van ruim 3,2 miljoen euro. De combinatie van zorgvuldige energiebesteding (waardoor het absoluut prijswaarde gas en elektriciteit nog groter wordt) en het steunmechanisme van de WKK-certificaten, maakt dat dergelijk project zich binnen 2 jaar terug betalen.
Intelligent ontwerp en naadloze integratie

Warme herwinnen is één ding, de gerecupererde warmte maximaal benutten is een uitdaging. Het interne ingenieursbureau van Agfa werd ingeschakeld om deze technologie zodanig te modifieren en te integreren in de eigen processen zodat aan deze doelstelling voldaan werd. Sinds kort biedt Agfa Materials Engineering haar expertise ook aan op de markt. Het bureau is onder meer gespecialiseerd in de conceptuele studie, het ontwerp en de implementatie van processen energietechnieken, alsook van mechanical design in apparatenbouw.

De auteurs

Luc BRAMS, Agfa Materials, Manager Technische Dienst Proces en Energie.
Stephan THYS, Agfa Materials, Projectleider WKK en Studieleider Luchtheautifulen en Energieën.
De Agfa-Gevaert Groep is één van 's werelds toonaangevende bedrijven in de imaging- en informatietechnologie. Agfa ontwikkelt, produceert en verkoopt analoge en digitale systemen voor de drukindustrie (Agfa Graphics), de zorgsector (Agfa HealthCare) en specifieke industriële toepassingen (Agfa Materials). De onderneming is aanwezig in 40 landen.
Contactpersoon Agfa-Gevaert:
Koen De Bakkor, Agfa Materials
Manager Technische Dienst Machineautomatisering en Externe Projecten
+32 (0) 3 444 7800, engineering@agfa.com
http://engineering.agfa.com/